Structural determinants of CaV1.3 L-type calcium channel gating

نویسندگان

  • Andreas Lieb
  • Anja Scharinger
  • Florian Hechenblaickner
  • Mathias Gebhart
  • Alexandra Koschak
  • Martina J Sinnegger-Brauns
  • Jörg Striessnig
چکیده

A C-terminal modulatory domain (CTM) tightly regulates the biophysical properties of Ca(v)1.3 L-type Ca(2+) channels, in particular the voltage dependence of activation (V(0.5)) and Ca(2+) dependent inactivation (CDI). A functional CTM is present in the long C-terminus of human and mouse Ca(v)1.3 (Ca(v)1.3(L)), but not in a rat long cDNA clone isolated from superior cervical ganglia neurons (rCa(v)1.3(scg)). We therefore addressed the question if this represents a species-difference and compared the biophysical properties of rCa(v)1.3(scg) with a rat cDNA isolated from rat pancreas (rCa(v)1.3(L)). When expressed in tsA-201 cells under identical experimental conditions rCa(v)1.3(L) exhibited Ca(2+) current properties indistinguishable from human and mouse Ca(v)1.3(L), compatible with the presence of a functional CTM. In contrast, rCa(v)1.3(scg) showed gating properties similar to human short splice variants lacking a CTM. rCa(v)1.3(scg) differs from rCa(v)1.3(L) at three single amino acid (aa) positions, one alternative spliced exon (exon31), and a N-terminal polymethionine stretch with two additional lysines. Two aa (S244, A2075) in rCa(v)1.3(scg) explained most of the functional differences to rCa(v)1.3(L). Their mutation to the corresponding residues in rCa(v)1.3(L) (G244, V2075) revealed that both contributed to the more negative V 0.5, but caused opposite effects on CDI. A2075 (located within a region forming the CTM) additionally permitted higher channel open probability. The cooperative action in the double-mutant restored gating properties similar to rCa(v)1.3(L). We found no evidence for transcripts containing one of the single rCa(v)1.3(scg) mutations in rat superior cervical ganglion preparations. However, the rCa(v)1.3(scg) variant provided interesting insight into the structural machinery involved in Ca(v)1.3 gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a new C-terminal splice variant of CaV1.3 L-type calcium channels with unique functional properties

Background In L-type voltage-gated calcium channels (VGCCs) the long C-terminal tail contains several sites for modulation by protein-protein interaction. CaV1.3 VGCCs (CaV1.3L) activate at negative voltages and support sinoatrial node pacemaking and hearing, and shape neuronal excitability. In CaV1.3L an intermolecular automodulatory C-terminal interaction (CTM) has been described which affect...

متن کامل

Oral Presentation Abstracts Cooperative Gating by Clustered Voltage-gated Cav1.3 Channels Enhances Inward Currents in Neurons the Subprimary Range and Force Generation in the Cat

L-type voltage-gated Cav1.3 (α1D) channels play a critical role in the amplification of synaptic inputs and the generation of persistent activity in motoneurons. As is the case for the other classes of voltage-gated channels, it is widely assumed that individual Cav1.3 channels behave independently with respect to voltage-activation, channel open time, and inactivation. With super-resolution fl...

متن کامل

Retinoschisin Facilitates the Function of L-Type Voltage-Gated Calcium Channels

Modulation of ion channels by extracellular proteins plays critical roles in shaping synaptic plasticity. Retinoschisin (RS1) is an extracellular adhesive protein secreted from photoreceptors and bipolar cells, and it plays an important role during retinal development, as well as in maintaining the stability of retinal layers. RS1 is known to form homologous octamers and interact with molecules...

متن کامل

Functional expression and characterization of a voltage-gated CaV1.3 (alpha1D) calcium channel subunit from an insulin-secreting cell line.

L-type calcium channels mediate depolarization-induced calcium influx in insulin-secreting cells and are thought to be modulated by G protein-coupled receptors (GPCRs). The major fraction of L-type alpha1-subunits in pancreatic beta-cells is of the neuroendocrine subtype (CaV1.3 or alpha1D). Here we studied the biophysical properties and receptor regulation of a CaV1.3 subunit previously cloned...

متن کامل

Splice variants of the CaV1.3 L-type calcium channel regulate dendritic spine morphology

Dendritic spines are the postsynaptic compartments of glutamatergic synapses in the brain. Their number and shape are subject to change in synaptic plasticity and neurological disorders including autism spectrum disorders and Parkinson's disease. The L-type calcium channel CaV1.3 constitutes an important calcium entry pathway implicated in the regulation of spine morphology. Here we investigate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011